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Normal numbers 

Given an integer b > 1, a real number α is b-normal (or “normal base b”) if 
every m-long string of digits appears in the base-b expansion of α with 
precisely the expected limiting frequency 1 / bm. 

 
Base-10 example:  Suppose α satisfies all of these conditions: 

1.  Every digit appears, in the limit, with frequency 1/10. 
2.  Every 2-long string of digits (e.g., “23”, “55”, “74”, etc.) appears, in the limit, 

with frequency 1/100. 
3.  Every 3-long string (e.g., “234”, “551”, “749”, etc.) appears, in the limit, with 

frequency 1/1000. 
4.  Every 4-long string (e.g., “2345”, “5518”, “7493”, etc.) appears, in the limit, 

with frequency 1/10000. 
Similarly for every m-long string of digits, for every integer m > 1. 

Then α is “10-normal” or “normal base 10.” 
  
Using measure theory, it is can be shown that, given an integer b > 1, almost 

all real numbers are b-normal.  In fact, almost all reals are b-normal for 
all integer bases b > 1 simultaneously (i.e., are “absolutely normal”). 
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Which specific reals are normal? 

These are widely believed to be b-normal, for all integer bases b > 1: 
π = 3.1415926535… 
e = 2.7182818284… 
sqrt(2) = 1.4142135623… 
log(2) = 0.6931471805… 
Every irrational algebraic number (this conjecture is due to Borel). 

 
But there are no proofs of normality for any of these constants in any base, 

nor are there any nonnormality results.   
 
Until recently, normality proofs were known only for a few relatively contrived 

examples, such as Champernowne’s constant = 
0.123456789101112131415… (which is 10-normal). 

Chaitin’s omega constant (from the theory of computational complexity) has 
been shown to be absolutely normal. 
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Fascination with π	



Newton (1670):  
·  “I am ashamed to tell you to how many figures I 

carried these computations, having no other 
business at the time.” 

Carl Sagan (1986):   
·  In his book Contact, the lead scientist (played by 

Jodie Foster in the movie version) looked for 
patterns in the digits of π. 

“Is π normal?” (and why) is one of the most ancient 
and fundamental of long-standing unsolved 
mathematical questions.   
Gaining insight on this problem has been a prime 
motivation for many of the computations of π 
through the ages. 
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Fax to DHB from “The Simpsons” 
TV show 
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21st century techniques to address the 
normality problem 

·  Statistical analyses, using sophisticated models of normality: 
§  D.H. Bailey, J.M. Borwein, C.S. Calude, M.J. Dinneen, M. Dumitrescu and A. Yee, “Normality and 

the digits of pi, http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/normality-digits-pi.pdf. 

·  Graphics and visualization – e.g., viewing digits as a random walk: 
§  F.J. Aragon Artacho, D.H. Bailey, J.M. Borwein and P.B. Borwein, “Walking on real numbers,” 

http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/tools-walk.pdf. 

·  Analyses of algebraic irrationals: 
§  D.H. Bailey, J.M. Borwein, R.E. Crandall and C. Pomerance, “On the binary expansions of 

algebraic numbers,” Journal of Number Theory Bordeau, vol. 16 (2004), pg. 487-518. 
§  Hajime Kaneko, “On normal numbers and powers of algebraic numbers,” Integers, vol. 10 (2010), 

pg. 31–64. 

·  Connections to the theory of BBP-type constants: 
§  D.H. Bailey and R.E. Crandall, "On the random character of fundamental constant expansions," 

Experimental Mathematics, vol. 10, no. 2 (Jun 2001), pg. 175-190. 
§  D.H. Bailey and R.E. Crandall, “Random generators and normal numbers,” Experimental 

Mathematics, vol. 11, no. 4 (2002), pg. 527-546. 

·  Analyses of Stoneham constants: 
§  D.H. Bailey and J.M. Borwein, “Nonnormality of Stoneham constants,” Ramanujan Journal,  

 http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/nonnormality.pdf. 
§  D.H. Bailey and J.M. Borwein, “Normal numbers and pseudorandom generators,”  

 http://crd.lbl.gov/~dhbailey/dhbpapers/normal-pseudo.pdf. 
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Random walk on the first two billion bits of π 
(base-4 digit 0,1,2,3 codes up, down, left, right) 

F.J. Aragon Artacho, D.H. Bailey, J.M. Borwein and P.B. Borwein, “Walking on real numbers,” available at  
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/tools-walk.pdf. 



8 

Explore the digits of π yourself 

A compelling online interactive tool is available to study the random walk on 
the first 100 billion binary digits of π: 

 http://gigapan.com/gigapans?tags=pi  
 
This was constructed by Fran Aragon Artacho, based on binary digits of π 
provided by Alex Yee. 
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Random walk on α2,3 base 2 (normal) 
compared to α2,3 base 6 (nonnormal) 

We will discuss the normality and nonnormality of α2,3 later in the talk. 
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Poisson model analysis of digits of π	



·  Recently a Poisson model-based approach was employed to analyze the 
normality of π, using the first 15,925,868,541,400 bits (approx. 4 trillion 
hexadecimal digits) of π, as computed by Alex Yee. 

·  Based on this analysis, the conclusion “π is not normal” (given the first 4 
trillion hexadecimal digits) has probability 10-3064. 

 
 
 
 
 
 
 
D.H. Bailey, J.M. Borwein, C.S. Calude, M.J. Dinneen, M. Dumitrescu and A. Yee, “Normality and the digits of 
pi,” manuscript, http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/normality-digits-pi.pdf. 
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A result for algebraic numbers 

If x is algebraic of degree d > 1, then its binary expansion through position n 
must have at least C n1/d 1-bits, for all sufficiently large n and some C that 
depends on x. 

 
Example:  The first n binary digits of sqrt(2) must have at least sqrt(n) ones.  

  
For the special case sqrt(m) for integer m, the result follows by simply noting 

that in binary notation, the one-bit count of the product of two integers is 
less than or equal to the product of the one-bit counts of the two integers. 

 
A related result was obtained by Hajime Kaneko of Kyoto University. 
 
However, note that these results are still a far cry from a full proof of 

normality, even in the single-digit binary sense. 
 
D.H. Bailey, J.M. Borwein, R.E. Crandall and C. Pomerance, “On the binary expansions of algebraic 

numbers,” Journal of Number Theory Bordeau, vol. 16 (2004), pg. 487-518. 
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BBP formulas for π and log 2 
In 1996, a computer program running the PSLQ algorithm discovered this 

formula, now known as the BBP formula for π:   
 
 
 
This formula permits one to directly calculate binary or hexadecimal 

(base-16) digits of π beginning at an arbitrary starting position n, without 
needing to calculate any of the first n-1 digits. 

 
A similar formula for log 2, which also has the arbitrary digit calculation 

property, is: 
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D.H. Bailey, P.B. Borwein and S. Plouffe, “On the rapid computation of various polylogarithmic constants,” 
Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913. 
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How to calculate individual binary 
digits of log 2 

Let x mod 1 denote the fractional part of x.  Note that we can write the binary 
expansion of log 2 beginning after position d as follows: 

(2
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The numerator of first part can be computed very rapidly, using the binary 
algorithm for exponentiation (i.e., the observation that an exponentiation can 
be accelerated by using the binary expansion of the exponent).  Only a few 
terms of the second part need be computed, since it is very small. 
 
This “trick” also leads to an interesting connection to normality. 
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BBP formulas, pseudorandom number 
generators and normality 

Consider the sequence x0 = 0, and 

(The 1/n term comes from BBP formula for log 2).  If it can be demonstrated 
that this sequence is equidistributed in the unit interval, then this would imply 
that log 2 is 2-normal. 
 
Similarly, consider the sequence x0 = 0, and 

(The large term is a combination of the four terms in BBP formula for π).  If it 
can be shown that this sequence is equidistributed in the unit interval, then 
this would imply that π is 16-normal (and hence 2-normal). 
D.H. Bailey and R. E. Crandall, “On the random character of fundamental constant expansions,” Experimental 
Mathematics, vol. 10, no. 2 (Jun 2001), pg. 175-190. 
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Normality of the Stoneham constants 

By extending the BBP approach, normality has been proved for the 
Stoneham numbers, the simplest of which is: 

 
�2,3 =

��

n=1

1
3n23n

= 0.041883680831502985071252898624571682426096 . . .10

= 0.0ab8e38f684bda12f684bf35ba781948b0fcd6e9e0 . . .16

This particular constant was proven 2-normal by Stoneham in 1971.  This 
has been extended to the case where (2,3) are any pair (b,c) of coprime 
integers > 1, and also to an uncountable class (here rn is n-th bit of r in [0,1)): 

�2,3(r) =
��

n=1

1
3n23n+rn

More recently, the 2-normality of α2,3 was proven more simply by means of a 
“hot spot” lemma proved using ergodic theory. 
 
D.H. Bailey and M. Misiurewicz, “A strong hot spot theorem,” Proceedings of the American Mathematical 
Society, vol. 134 (2006), no. 9, pg. 2495-2501. 
D.H. Bailey and R.E. Crandall, “Random generators and normal numbers,” Experimental Mathematics, vol. 11, 
no. 4 (2002), pg. 527-546. 
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The “hot spot” lemma and a proof of 
normality for α2,3 

Let A(a,y,n,m) denote the count of occurrences where the m-long binary 
string y is found to start at position p in the base-b expansion of α, where     
1 <= p <= n.  Then if x is not b-normal, there is some y in the unit interval s.t. 

lim inf
m!1

lim sup
n!1

b

m
A(x, y, n,m)

n

= 1

Thus if α is not b-normal, there must exist some interval [r1, s1) in which 
successive shifts of the base-b expansion of a visit [r1,s1) 10 times more 
frequently, in the limit, relative to its length s1 - r1; there must be another 
interval [r2, s2) that is visited 100 times more often relative to its length; etc. 
 
On the other hand, if it can be established that no subinterval of the unit 
interval is visited, say, 1,000 times more often relative to its length by 
successive shifts of the base-b digits, this suffices to prove α is b-normal.   
 
This can be condition is met for α2,3 in base-2.  Thus α2,3 is 2-normal. 
 
D.H. Bailey and M. Misiurewicz, “A strong hot spot theorem,” Proceedings of the American Mathematical 
Society, vol. 134 (2006), no. 9, pg. 2495-2501. 
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A pseudorandom number generator 
based on the binary digits of α2,3 

·  It can be shown that one can generate successive sections of the binary 
expansion of α2,3 by means of a simple scheme analogous to commonly 
used linear congruential pseudorandom number generators. 

·  The period of this generator is 3.7 x 1015.  Higher periods are possible if 
one uses higher-precision arithmetic. 

·  Floating-point numbers so generated appear to have excellent statistical 
properties, and do not have problems with power-of-two strides. 

·  The generator has a “jump-ahead” feature, which is useful in a parallel 
environment so each processor can generator its own section. 

·  The generator can be implemented at a speed matching that of other 
commonly used pseudorandom generators. 

 
 
 
 
D.H. Bailey and J.M. Borwein, “Normal numbers and pseudorandom generators,”  

http://crd.lbl.gov/~dhbailey/dhbpapers/normal-pseudo.pdf. 

 



18 

A nonnormality result 

Although α2,3 is provably 2-normal, surprisingly it is NOT 6-normal.  Note that 
we can write 

The first portion of this expression is zero, since all of the terms in the 
summation are integers.  When n = 3m, the second part is accurately 
approximated by the first term of the series.  Thus, 

Since this is extremely small for large m, the base-6 expansion of α2,3 has 
long stretches of zeroes beginning at positions 3m + 1.  This observation can 
be fashioned into a rigorous proof of nonnormality. 
 
D.H. Bailey and J. M. Borwein, “Normal numbers and pseudorandom generators,” available at "
http://crd.lbl.gov/~dhbailey/dhbpapers/normal-pseudo.pdf."
D.H. Bailey and J.M. Borwein, “Nonnormality of Stoneham constants,” Ramanujan Journal, "
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/nonnormality.pdf."
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Base-6 expansion of α2,3 

0. 
013014043000333425113050213000000124355504543223301150024352532055135234354101 
043000000000000000051411300540405554553031442504334351012413452351125142125134 
505503545015053522052044340452151505102411552500425130051124454001044131150032 
420303213000000000000000000000000000000000000000000142120343111214520135254453 
421134122402205253010542044235524110554150155204350414555400310145303033532002 
534340401301240104453254343502142020432415025555101004043300045544114501031331 
451151014451412344334234124005513133350454235305531511535015334524354502500555 
214530542343421530350125024205404135451231323245353031534552304115020154242121 
145201542222534340340450530123325534440443103332445332141415014233454542412432 
031253400501341502455144043000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000031335054 
244443111105553414105201454021341231300142433313311551144002552443344143003224 
335300102353515310402031320020533130021221200323413302222122521000035254543002 
545040035245112205252324300200332523104022522341033520112253412034105440205323 
451011020023525150015212545502421545343134553235001545540400023411521342323335 
352445254035541452214132514501442052123331155522222331511535031203434310450421 
303512422055300241415240113013242241234152033301205305300410045411552323315404 
124335430412302302244135255011522313421543013205100505502430344422115032003312 
043000355240351155014141310244412135431134045402354431451021050554450430513450 
125125412054431444230051425001123154412512211541355432123414214030443515204024 
235524524554300502531314011015041242313530200005202433402032025411301324022320 
213143235351510550435543534053314401324313010031034432330333020541411524554102 
024511252554525045245533541442124051204242044021002315121441215553532044450502 
551452010241043242055023411434513124341231325032130205521143454221303254322525 
001003215023424404353350251050434103131435231504421350241010405301043142100315 
114422021202242031254124153534242220443313314424101440231132320424442150031332 
450441322425500055412431400314402120525313133331045531400355154135352044001245 
423040225112500244121430424020245242243022325455215430225105432551034135040520 
213000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000005304302452321100553442520302 
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Counts Zm of consecutive zeroes following 
position 3m in the base-6 expansion of α2,3 

m 3m Zm

1 3 1
2 9 3
3 27 6
4 81 16
5 243 42
6 729 121
7 2187 356
8 6561 1058
9 19683 3166

10 59049 9487

Note that in the first 59049+9487 = 68,536 digits, there are at least 1+3+…
+9487 = 14,256 zeroes (not counting zeroes in the “random” sections), so 
that the frequency of zeroes up to here is at least 0.208007… > 1/6).  It can 
be shown that this ratio also holds in the limit.  Thus α2,3 is not 6-normal. 
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A general nonnormality result for the 
Stoneham constants 

Given co-prime integers b > 1 and c > 1, and integers p, q, r > 0, with neither 
b nor c dividing r, let B = bp cq r, and assume this condition holds: 

Then the Stoneham constant 

D = cq/pr1/p/bc�1 < 1

↵b,c =
1X

n=1

1
cnbcn

is not B-normal.  In particular, αb,c is b-normal but not bc-normal. 
 
Example:  α2,3 is nonnormal base 6, 12, 24, 36, 48, 60, 72, 96, 120, 144, … "
"
It is not known whether or not this result gives a complete catalog of the 
bases for which a Stoneham constant is nonnormal. 
 
D.H. Bailey and J.M. Borwein, “Nonnormality of Stoneham constants,” Ramanujan Journal, "
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/nonnormality.pdf."
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Nonnormality of the sum of two 
Stoneham constants 

Assume that αb,c and αd,e are two Stoneham constants, both B-nonnormal as 
given in the previous result.  Assume further that c and e are not 
multiplicatively related -- there are no integers s and t such that cs = et.   
 
Then the sum αb,c + αd,e is also B-nonnormal. 
 
 
 
 
 
 
 
 
 
D.H. Bailey and J.M. Borwein, “Nonnormality of Stoneham constants,” Ramanujan Journal,  
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/nonnormality.pdf. 
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Open questions 

·  Is α2,3 3-normal, or not?  There are many open cases of this type. 
·  Is the nonnormality result given above a complete catalog of cases?  
·  α2,3 and α2,5 are each 2-normal.  Is  α2,3+ α2,5  2-normal?  What conditions 

ensure that normal + normal is normal? 
·  Can the normality and nonnormality proofs of Stoneham constants be 

generalized to a larger class of real constants?  Answer: Yes! 
·  Can absolute normality (i.e., b-normal for all integer bases b > 1) be 

established for a Stoneham-like constant?  Or for any other constant? 
·  Can normality (to any base) be established for any of the “natural” 

irrational constants of mathematics – e, π, sqrt(2), log(2), zeta(3), etc.?  
·  Can nonnormality be proven for any of the natural irrational constants? 
 
Any normality or nonnormality proof for a well-known mathematical constant 
would be a very significant result.   
So would any result that helps to better understand why simple mathematical 
operations produce highly complex digit expansions. 


